AMIGOS DEL PAIS DE TENERIFT

1autis et incoli

asiano Rodriguez Leon

D

M2 6] THCOTT2

Machines

Maquinas de Turing

Tape of infinite length

Finite
Control

- _/

... the only way | can get it out of my
mind is by running hard; it’s the only

https://turingmachine.io/ way | can get some release

https://turingmachine.io/
https://turingmachine.io/
https://es.wikipedia.org/wiki/Alan_Turing

https://turingmachine.io/

Add two unary numbers
input: '11111 1111' # 5 + 4
blank: " '
start state: searchForWhite
table:

search for the first white

searchForWhite:

1 : R

{write: 1, R: searchForTheEnd}
then carry the 1

searchForTheEnd:

1 : R

b : {L: removelLastOne}
removelLastOne:

1 : {write: ' ', L: done}

done:

https://turingmachine.io/
https://turingmachine.io/

TAPE

UNIVERSAL TURING MACHINE: http://morphett.info/turing/

é

I

dode number of aI Tur

I

l

Scanned
symbol

Print Sk, Erase
Left, Right

Control unit

Table of U

tape symbol is blank
tape symbol is0
tape symbolis 1
tape symbol is X
tape symbd is ¥
etc.

Current
state A:

Write Mowe Next
symbol tape state

R

= b =

R
R
L
L

Mo me

Current
state B:

Write Move Next
symbol tape state

=i m o -
DZ DDV >o
ngm='v

Current
state Vi

Write Move Next
symbol tape state

O~y
D DMZ D
Yo ==

http://morphett.info/turing/

Alan Turing On Computable Numbers, with an Application to the Entscheidungsproblem. 1937
Turing reduces this problem to the Halting Problem.

Halting Problem: Write a program that from a description of an arbitrary computer program
will always stop telling us whether the program will finish running, or continue to run forever.

let halts = loadSolution(‘'halting-problem-solution');
function forEver() { while (true) print(‘Hello’); }
if (halts(forEver)) print('It halts!")

else print(‘Loops for ever!’);
function paradox() {

if (halts(paradox)) { forEver(); } else stop;

halts(paradox);

Corollary: There are problems for which you cannot find a program to solve them

https://en.wikipedia.org/wiki/Computer_program

Cellular Automata

Cellular automata were invented in the 1940s by John von Neumann and Stanislaw Ulam at Los Alamos
National Laboratory. They consist of a two-dimensional array of cells that “evolve” step-by-step according to the
state of neighbouring cells and certain rules that depend on the simulation.

John Horton Conway (26 December 1937 — 11 April 2020) The Game of Life.

https://playgameoflife.com/
https://playgameoflife.com/

119P4H1VO0: A spaceship discovered by Dean Hickerson in December 1989

https://playgameoflife.com/lexicon/119P4H1V0
https://playgameoflife.com/lexicon/119P4H1V0

A Turing Machine in Comway's Gamme Lif 30/08/01 Page 1 of On February 10, 2010 Paul Rendell found a Codification of a

A Turing Machine In Conway's Game Life, Universal Turing Machine inside Conway’s game.
Paul Rendell

I have constructed a Turing Machine in Conway’s Game Life (figure 1). In this paper I describes the machine’s parts,
how it works and the principle choices made during the construction.

“

S e 3
EE&cd g |
@R EEE A
i 8 Iea
» 33 3 9 &
<

.
W
o0
P

Figure 1The Complete Turing Machine

https://ieeexplore.ieee.org/document/5999906
http://www.youtube.com/watch?v=My8AsV7bA94

Church-Turing thesis
Two computer models P and Q are called equivalent if P can simulate Q and Q can simulate P

e In 1933, Kurt Godel created a formal definition of a class called general recursive functions
® In 1936, Alonzo Church created a method for defining functions called the A-calculus
® In 1936, Turing created the Turing machines

These three formally defined classes of computable functions coincide:
Theorem: A function is A-computable if and only if it is Turing computable, and if and only if it is general
recursive.

Any effectively (mechanically) calculable function can be computed by any of the above three
formally-defined models (informal notion)

Any real-world calculation can be done using the lambda calculus or Turing Machines (Wolfrang)
Essentially, then, the Church-Turing thesis says that no human computer, or machine that mimics a

human computer, can out-compute the universal Turing machine. Copeland. The Stanford
Encyclopedia of Philosophy

PR . - ——
. m Q / I _HA‘.U“G'M‘.IK‘ a Zu der Patentschritt 924 107 7 der Pasesetits 907 948
R "3 4 4

~ Kl.42m Gr.16 Kl 42m Gr. 15
™ - : Abb1
o ~ R ~ ° - Ve R4 y
N & : achine -—'g t.,
= | ' e &7 &
_ Abbi bz [(a3
$ P o T ‘:»;ni -
g H ¢ / F —" ’):;‘-‘ fy
> — J AN An-Aan A . 48#7 vr-fﬂﬁ’—;l'—— : ‘_‘jra&:‘:: ‘
\ b — o Sl
p— T u fn i s e o o
oar . . > | Py == e
| I f R ¥ — | £ =%
% = >3 5
| .
_— ! ¥ o
'--‘.'T
. . . o ——— o V
En 1935 Zuse construye la Z1. Leia las instrucciones desde —
una cinta perforada de 35 mm. No era una maquina Turing J RO +0,- €
completa
i < ki g
, O O q

La Z3 (1941) era un computador binario de punto flotante de 22 bits con memoria y
unidad de calculo basada en relés telefénicos. No almacenaba el programa en
memoria. A pesar de la ausencia de saltos condicionales, el Z3 era un ordenador
Turing-completo

John von Neumann “First Draft on a Report on the EDVAC”

June 1945

Avﬁu/ w ‘6“"//()

John von Neumana

Contract No. W-670-ORD-4926
Betwoen tho
United States Aray Ordnante Department
and the

University of Pennsylvania

Moore Schocl of i:‘.ec!.r‘.c‘.*. Bngineering
University of Pennsylvania

June 30, 1945

Alan Turing “Proposed Electronic Calculator” 1945.

-3+ Page 3/48 (ACE)

It is intended thot the setting up of the machine for new problems
shall be virtually only a matter of paper work., Besides the paper work
nothing will have to be done except to prepare a poack of Hollerith cords
in ceccordence with this paper work, ond to pass them through a cord
recder comnected with the machine, There will positively be no internal
alterations to be made even if we wish suddenly to switch from
oaloulating the energy levels of the ncon atom to the enumeration of
groups of order 720, It mny oppear somewhnt puzzling that this con be
done, How can one expect o mechine to do all this multitudinous
veriety of things? The answer is that we should consider the machine
as doing something quite simple, nomely corrying out orders given to it
in o standord form which it is oble to understond,

The acturl calculation done by the machine will bo carried out
in the binary ..aa:Lo. Moterial will howover be put in and taken out in
decincl form. . -

In order to cbtain high spceds of calculotion the calculator will .
be entirely clectronic. A unit operation (typified by adding one and
one) will take 1 microsccond. It is not thought wise to design for
higher speeds then this as yet.

The present report gives o fairly completo account of the proposed
calculator, It is recommended however that it be read in conjunotion
with J, von Neumonn's 'Report on the EDVACY.

2. Composition of the Calculator. .

¥We list here the main components of the calculator as at present
conceived: -

(1) Ercsible memory units of fairly lorge c..p'\cxty, to be known
as dynomic storoge (DS). Probobly consisting of between 50 and 500
mercury tonks with 2 capacity of cbout 1000 digits eech,

(2) Quick reference temporary stornge units (TS) probobly
nurbering cbout 50 ond each with o capacity of say 32 binary digits.

(3) Input organ (I0) to tronsfer instructions and other material
into the caloulator from the outside world, It will have a mechanical
port consisting of o Hollerith card reading unit, and an electronic
p"rt which will be mterml to the calculator.

(&) oOutput organ (00), to transfer results out of the caloulator.
It will have on externol port consisting of a Hollerith card
r and an 1 el nic part.

(5) The logical control (IC). * This is the very heart of the
machine, Its purposc is to pret the ix tions end give them
effect, To a large extent it merely passcs the instructions on to
CA. There is no very distinot line betwoen IC and CA.

(6) The centrcl crithmetic part (CA). If we like to consider
IC as the analogue of ¢ computer then CA must be considered a desk
onloulating machine, It corrics out the four fundsmentol ardthmetical
processes (with possidble exception of division, sec p. 27), and vorious
others of the nature of copying, substituting, cnd the like, To &
lerge oxtent, these proccsses con be reduced to one another by various
round~bout memns; Judgment is thercfore required in choosing on
appropriatc set of fundomental processcs.

w “ay

Languages

0 1,000,000 2,000,000 3,000,000
JavaScript :
Java 1,400,214 . . ogs
Universal Languages vs Domain Specific Languages

878,940

Problem il Solution
Domain A Domain

G
=

2012-2019

Objective-C

Universal Programming Language = Creation of a new universal (In Turing’s sense) machine on top of an existing one
(software)

Operating System = Creation of a new universal (In Turing’s sense) machine on top of an existing one (hardware)

It’s (Software Machines) all the way down up to the Hardware

b
>

Application

Programming Language

Software

[Assembly Language
| Machine Code

Increasing order of Complexity
Increasing order of Abstraction

Hardware

Devices (Transistors)

<4
-

Layers of Abstraction

Computer programming is the process of telling a computer to do certain things by giving it
instructions. These instructions are called programs. A person who writes instructions is a
computer programmer. The instructions come in different languages; they are called

programming languages. https://simple.wikipedia.org/

https://simple.wikipedia.org/wiki/Computer_programming#:~:text=Computer%20programming%20is%20the%20process,they%20are%20called%20programming%20languages.

Arbol Sintactico Abstracto

321 0
321 | - H 1

= =

Semantica3-2-1

=3-2

|
|

Gramatica Independiente del Contexto

e expresion — expresion -’ expresion

{ expresion
|

J expresion J - J Expresion
[

3-2-1 = el | e

i NUM 3 { NUM 2

* expresion — NUMERO

N

Context Free Grammars

WINTER
ARTER

Gramatica Ambigua

e expresion — expresion -’ expresion
* expresion — NUMERO

.

0=(3-2)-1

1=3-2

Esquema de Traduccion (yacc)

e —e'“e {55=51-53;}
e—> NUM {S$S = Number($1);

)

3-2-1
$$=$1-$3=1-1=0 g

$$=$1-$3=3-1=2 g

1

$5="3’

5513 =

B O e

Analisis Léxico y Expresiones Regulares

[0-9]+ /* is a Natural Number */
-

https://en.wikipedia.org/wiki/Regular_expressions
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

Un Programa que Evalua Expresiones

https://nolanlawson.github.io/jison-debugger/

%lex

%%

[9 9]+ return 'NUMBER'
1 [1] r‘etur‘n 1 _ [|

. return "INVALID'
/lex

%26

es: e

{re
e : e '-'e {%$%
| NUMBER {$$

https://nolanlawson.github.io/jison-debugger/
https://nolanlawson.github.io/jison-debugger/

Parser Generators: an example

C & https://nolanlawson.github.iofjison-debugger/ px e

Write your grammar

Jison debugger!

tstart er

%%

Load a sample grammar
Choose a grammar...
Parse some text Multiline

alb'c

«

Compiled grammar

Tokens

a | b * c F
canr] |] caar [«] caar | Send.

Parse tree Show log

@)
6 (:) er
O O
O O O
CHAR f CHAR
a O c
o O
CHAR
Q

Parser result

true

This tool, a parser generator uses a
parsing algorithm known as LALR that
was invented by Donald Ervin Knuth
(1965)

If you think you're a really good
programmer... read Knuth's Art of
Computer Programming... You
should definitely send me a resume

if you can read the whole thing.

Bill Gates

AZQUOTES

KA
€y

https://nolanlawson.github.io/jison-debugger/

8"] ¥y . e

Science is what we un

The Phases of a Translator

et Annotated Transformed
s¥:::x Type Check AST | Optimize AST CodeGen

A programming language translator usually consists of a sequence of stages

Lexer:
e Skips the comments and whitespaces and produces the stream of tokens for numbers, identifiers,
reserved words, etc
Parser:
e Reads the stream of tokens, check that it complies with the syntactic rules and produces the Abstract
Syntax Tree: a data structure representing the underlying syntactic structure of the input program

The Abstract Syntax Tree: a data structure representing the underlying syntactic structure of the input
program: https://astexplorer.net/

©O0® s |F sec M Rec |BGo |[@Se [Qu|@EC @pri|Par |@Pat [@Ess A x 2 rue | @ Ese|[EEst [est|[9 e | A No| +

c @ https://astexplorer.net Q v« B & ¢ v B =
AST Explorer Snippet & Javascript </> esprima # () Transform default ?
1 function foo(a, b) { Tree JSON Parser: esprima-4.019ms
g ::; ; : ;?lll::;ion @ v Autofocus « Hide methods | | Hide empty keys (| Hide location data | | Hide type keys
4 return z+3; - Program {
5 1N(2): 4 "
6} type: "Program
7 foo(1l, 'wut', 3); - body: [
- FunctionDeclaration {
type: "FunctionDeclaration"
- id: Identifier {
type: "Identifier"
name: "foo"
+ range: [2 elements]
}
+ params: [2 elements]
- body: BlockStatement {
type: "BlockStatement”
- body: [
+ VariableDeclaration {type, declarations, kind, range}
+ VariableDeclaration {type, declarations, kind, range}
]
+ range: [2 elements]
}
generator: false
expression: false
Built with React, Babel, Font Awesome, CodeMirror, Express, and webpack | GitHub
A campus-ameri...png Mostrar todas X

https://astexplorer.net/
https://astexplorer.net/

Abstract

Annotated

Transformed JVM

Parse Syntax
Tree

AST CodeGen

Optimize

AST bytecode

° as input theabstract syntax tree
® Checks that the program complies with the static semantic rules of the language
e Performs name analysis, relating uses of names to declarations of names
Input Program ® Checks that the types of arguments of operations are consistent with their
specification Symbol Table
let a : integer; AST D TYPE
a = “hello”;
’ a INTEGER
/

ID(a) / Literal (“hello”)

TYPE: INTEGER TYPE: STRING

Abstract
Parse Syntax Type Check annotated UL | CodeGen sV

AST

= bytecode

® Applies transformations that improve the program in various goals
e Goals: execution time, memory consumption, energy consumption, etc.
e Examples of transformations: Constant folding, Constant propagation, Loop

invariants
Input Program
a = 2+3;
I .
| - | | - I| Constant Folding > | a | | " |

Abstract

Annotated Transformed JVM
P T heck imi
arse s¥|:::x ype Chec AST | Optimize AST CodeGen PYtocaas

e Transforms abstract syntax tree to instructions for a particular computer architecture

CODE GENERATION

//Translating guard
[Lils

MOV RO,[4096]
MOV R1,[4097]
LT RO,R1

JZ RO,L2

Input Program

while (a < b) do
a=b+ c
end while

//Translating body
MOV R0,[4097]
MOV R1,[4098]
ADD RO,R1

SYMBOL TABLE MOV [4096],R0

VARIABLE NAME | MEMORY ADDRESS JLI\ZIIP L1

L a 4096

L b 4097

c 4098

PR

¥ N

ment L

AT T R LR

PR T ORI P
WL O e

Arithmetic

Logic
Control i
Unit Unit

Accumulator
- RN

