Introducción a los PEGs

In computer science, a , or , is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language.

The formalism was introduced by and is closely related to the family of top-down parsing languages introduced in the early 1970s.

Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation:

  • the choice operator selects the first match in PEG, while it is ambiguous in CFG.

  • This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser.

Unlike CFGs, PEGs cannot be ; if a string parses, it has exactly one valid parse tree.

It is conjectured that there exist context-free languages that cannot be parsed by a PEG, but this is not yet proven.

Syntax

Formally, a parsing expression grammar consists of:

  • A finite set NN of nonterminal symbols.

  • A finite set Σ\Sigma of terminal symbols that is disjoint from NN.

  • A finite set PP of parsing rules.

  • An expression eSe_S termed the starting expression.

Each parsing rule in PP has the form AeA \leftarrow e, where AA is a nonterminal symbol and ee is a .

A parsing expression is a hierarchical expression similar to a regular expression, which is constructed in the following fashion:

  1. An atomic parsing expression consists of:

    1. any terminal symbol,

    2. any nonterminal symbol, or

    3. the empty string ϵ\epsilon.

  2. Given any existing parsing expressions ee, e1e_1, and e2e_2, a new parsing expression can be constructed using the following operators:

    1. Sequence: e1e2e1 e2

    2. Ordered choice: e1/e2e1 / e2

    3. Zero-or-more: ee*

    4. One-or-more: e+e+

    5. Optional: e?e?

    6. And-predicate: &e\&e

    7. Not-predicate: !e!e

Semantics

The fundamental difference between context-free grammars and parsing expression grammars is that the PEG’s choice operator is ordered:

  1. If the first alternative succeeds, the second alternative is ignored.

  2. Thus ordered choice is not commutative, unlike unordered choice as in context-free grammars.

  3. The consequence is that if a CFG is transliterated directly to a PEG, any ambiguity in the former is resolved by deterministically picking one parse tree from the possible parses.

  4. By carefully choosing the order in which the grammar alternatives are specified, a programmer has a great deal of control over which parse tree is selected.

  5. PEGs can look ahead into the input string without actually consuming it

  6. The and-predicate expression &e\&e invokes the sub-expression ee, and then succeeds if ee succeeds and fails if ee fails, but in either case never consumes any input.

  7. The not-predicate expression !e!e succeeds if ee fails and fails if ee succeeds, again consuming no input in either case.

Implementing parsers from parsing expression grammars

Any parsing expression grammar can be converted directly into a .

Due to the unlimited lookahead capability that the grammar formalism provides, however, the resulting parser could exhibit exponential time performance in the worst case.

It is possible to obtain better performance for any parsing expression grammar by converting its recursive descent parser into a , which always runs in linear time, at the cost of substantially greater storage space requirements.

A packrat parser is a form of parser similar to a recursive descent parser in construction, except that during the parsing process the intermediate results of all invocations of the mutually recursive parsing functions, ensuring that each parsing function is only invoked at most once at a given input position.

Because of this memoization, a packrat parser has the ability to parse many context-free grammars and any parsing expression grammar (including some that do not represent context-free languages) in linear time.

Examples of memoized recursive descent parsers are known from at least as early as 1993.

Note that this analysis of the performance of a packrat parser assumes that enough memory is available to hold all of the memoized results; in practice, if there were not enough memory, some parsing functions might have to be invoked more than once at the same input position, and consequently the parser could take more than linear time.

It is also possible to build LL parsers and LR parsers from parsing expression grammars, with better worst-case performance than a recursive descent parser, but the unlimited lookahead capability of the grammar formalism is then lost. Therefore, not all languages that can be expressed using parsing expression grammars can be parsed by LL or LR parsers.

Lexical Analysis

Parsers for languages expressed as a CFG, such as LR parsers, require a separate tokenization step to be done first, which breaks up the input based on the location of spaces, punctuation, etc.

The tokenization is necessary because of the way these parsers use lookahead to parse CFGs that meet certain requirements in linear time.

PEGs do not require tokenization to be a separate step, and tokenization rules can be written in the same way as any other grammar rule.

Left recursion

PEGs cannot express left-recursive rules where a rule refers to itself without moving forward in the string. For example, the following left-recursive CFG rule:

string-of-a -> string-of-a 'a' | 'a'

can be rewritten in a PEG using the plus operator:

string-of-a <- 'a'+

The process of rewriting indirectly left-recursive rules is complex in some packrat parsers, especially when semantic actions are involved.

Referencias y Documentación

  • Véase

      • Michael’s Blog: . The PEG.js Tutorial
    • . Véanse @nathanuniversity y @nathanclosures

PEGJS

is a parser generator for JavaScript that produces parsers.

generates a parser from a Parsing Expression Grammar describing a language.

We can specify what the parser returns (using semantic actions on matched parts of the input).

To use the pegjs command, install globally:

$ npm install -g pegjs

To use the JavaScript API, install locally:

$ npm install pegjs

To use it from the browser, download the library ( or ).

[~/srcPLgrado/pegjs/examples(master)]$ pegjs --help
Usage: pegjs [options] [--] [<input_file>] [<output_file>]

Generates a parser from the PEG grammar specified in the <input_file> and writes
it to the <output_file>.

If the <output_file> is omitted, its name is generated by changing the
<input_file> extension to ".js". If both <input_file> and <output_file> are
omitted, standard input and output are used.

Options:
  -e, --export-var <variable>        name of the variable where the parser
                                     object will be stored (default:
                                     "module.exports")
      --cache                        make generated parser cache results
      --allowed-start-rules <rules>  comma-separated list of rules the generated
                                     parser will be allowed to start parsing
                                     from (default: the first rule in the
                                     grammar)
  -o, --optimize <goal>              select optimization for speed or size
                                     (default: speed)
      --plugin <plugin>              use a specified plugin (can be specified
                                     multiple times)
      --extra-options <options>      additional options (in JSON format) to pass
                                     to PEG.buildParser
      --extra-options-file <file>    file with additional options (in JSON
                                     format) to pass to PEG.buildParser
  -v, --version                      print version information and exit
  -h, --help                         print help and exit

[~/srcPLgrado/pegjs/examples(master)]$ node
> PEG = require("pegjs")
{ VERSION: '0.8.0',
  GrammarError: [Function],
  parser: 
   { SyntaxError: [Function: SyntaxError],
     parse: [Function: parse] },
  compiler: 
   { passes: 
      { check: [Object],
        transform: [Object],
        generate: [Object] },
     compile: [Function] },
  buildParser: [Function] }

> parser = PEG.buildParser("start = ('a' / 'b')+")
{ SyntaxError: [Function: SyntaxError],
  parse: [Function: parse] }

Using the generated parser is simple — just call its parse method and pass an input string as a parameter.

The method will return

  • a parse result (the exact value depends on the grammar used to build the parser) or

  • throw an if the input is invalid.

    The exception will contain offset, line, column, expected, found and message properties with more details about the error.

You can tweak parser behavior by passing a second parameter with an options object to the parse method.

Only one option is currently supported:

startRule which is the name of the rule to start parsing from.

> parser.parse("abba"); 
[ 'a', 'b', 'b', 'a' ]
> 

Specifying we can set the rules the parser will be allowed to start parsing from (default: the first rule in the grammar).

[~/srcPLgrado/pegjs/examples(master)]$ cat allowedstartrules.js 
var PEG = require("pegjs");
var grammar = "a = 'hello' b\nb = 'world'"; //"a = 'hello' b\nb='world';
console.log(grammar); // a = 'hello' b
                      // b = 'world'
var parser = PEG.buildParser(grammar,{ allowedStartRules: ['a', 'b'] });
var r = parser.parse("helloworld", { startRule: 'a' });
console.log(r); // [ 'hello', 'world' ]
r = parser.parse("helloworld")
console.log(r); // [ 'hello', 'world' ]

r =  parser.parse("world", { startRule: 'b' })
console.log(r); // 'world'

try {
  r = parser.parse("world"); // Throws an exception
}
catch(e) {
  console.log("Error!!!!");
  console.log(e);
}

[~/srcPLgrado/pegjs/examples(master)]$ node allowedstartrules.js 
a = 'hello' b
b = 'world'
[ 'hello', 'world' ]
[ 'hello', 'world' ]
world
Error!!!!
{ message: 'Expected "hello" but "w" found.',
  expected: [ { type: 'literal', value: 'hello', description: '"hello"' } ],
  found: 'w',
  offset: 0,
  line: 1,
  column: 1,
  name: 'SyntaxError' }

The contains

  • message

  • expected,

  • found

  • offset,

  • line,

  • column,

  • name

and properties with more details about the error.

  • When output is set to , the method will return generated parser object;

    > PEG = require("pegjs")
    > grammar = "a = 'hello' b\nb='world'"
    'a = \'hello\' b\nb=\'world\''
    > console.log(grammar)
    a = 'hello' b
    b='world'
    > parser = PEG.buildParser(grammar,{ output: "parser"})
    { SyntaxError: [Function: SyntaxError],
      parse: [Function: parse] }
      > parser.parse("helloworld")
      [ 'hello', 'world' ]
    
  • if set to , it will return parser source code as a string

    > parser = PEG.buildParser(grammar,{ output: "source"})
    > typeof parser
    'string'
    > console.log(parser.substring(0,100))
    (function() {
      /*
       * Generated by PEG.js 0.8.0.
       *
       * http://pegjs.majda.cz/
       */
    
  • (default: parser).

La opción indica que plugin se van a usar.

$ pegjs --plugin pegjs-coffee-plugin remove_left_recursive.pegjs 

is a plugin for PEG.js to use CoffeeScript in actions.

[~/srcPLgrado/pegjs_examples(master)]$ cat plugin.coffee 
#!/usr/bin/env coffee
PEG = require 'pegjs'
coffee = require 'pegjs-coffee-plugin'
grammar = """
a = 'hello' _ b { console.log 3; "hello world!" }
b = 'world'     { console.log 2 }
_ = [ \t]+      { console.log 1 }
"""
parser = PEG.buildParser grammar, plugins: [coffee]
r = parser.parse "hello world"
console.log("r = #{r}")

La ejecución nos muestra además el orden de abajo - arriba y de izquierda -derecha en la ejecución de las acciones semánticas:

[~/srcPLgrado/pegjs_examples(master)]$ coffee plugin.coffee 
1
2
3
r = hello world!

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ npm install -g pegjs-coffee-plugin

[~/Dropbox/src/javascript/PLgrado/pegjs-coffee-plugin/examples(master)]$ cat simple.pegjs 
{ 
  @reduce = (left, right)->  
    sum = left
    for t in right
      op = t[0]
      num = t[1]
      switch op 
        when '+' then sum += num; break
        when '-' then sum -= num; break
        when '*' then sum *= num; break
        when '/' then sum /= num; break
        else console.log("Error! "+op)
    sum

}
sum   = left:product right:([+-] product)* { @reduce(left, right); }
product = left:value right:([*/] value)*   { @reduce(left, right); }
value   = number:[0-9]+                    { parseInt(number.join(''),10) }
        / '(' sum:sum ')'                  { sum }

[~/Dropbox/src/javascript/PLgrado/pegjs-coffee-plugin/examples(master)]$  cat use_simple.coffee 
PEG = require("./simple.js")
r = PEG.parse("2+3*(2+1)-10/2")
console.log(r)

[~/srcPLgrado/pegjs/examples/coffee-plugin-examples(master)]$ pegjs --plugin pegjs-coffee-plugin simple.pegjs
[~/srcPLgrado/pegjs/examples/coffee-plugin-examples(master)]$ coffee use_simple.coffee
input = 3-1-2 result = 0
input = 2+3*(2+1)-10/2 result = 6
  • en GitHub

If true, makes the parser cache results, avoiding exponential parsing time in pathological cases but making the parser slower (default: false).

Selects between optimizing the generated parser for parsing speed (speed) or code size (size) (default: speed).

Un Ejemplo Sencillo

[~/srcPLgrado/pegjs/examples(master)]$ pwd -P
/Users/casiano/local/src/javascript/PLgrado/pegjs/examples
[~/srcPLgrado/pegjs/examples(master)]$ git remote -v
dmajda  https://github.com/dmajda/pegjs.git (fetch)
dmajda  https://github.com/dmajda/pegjs.git (push)
origin  git@github.com:crguezl/pegjs.git (fetch)
origin  git@github.com:crguezl/pegjs.git (push)

The grammar syntax is similar to JavaScript in that it is not line-oriented and ignores whitespace between tokens.

You can also use JavaScript-style comments (// ... and /* ... */).

Let’s look at example grammar that recognizes simple arithmetic expressions like 2*(3+4).

A parser generated from this grammar computes their values.

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat arithmetics.pegjs 
/*
 * Classic example grammar, which recognizes simple arithmetic expressions like
 * "2*(3+4)". The parser generated from this grammar then computes their value.
 */

start
  = additive

additive
  = left:multiplicative PLUS right:additive { return left + right; }
  / left:multiplicative MINUS right:additive { return left - right; }
  / multiplicative

multiplicative
  = left:primary MULT right:multiplicative { return left * right; }
  / left:primary DIV right:multiplicative { return left / right; }
  / primary

primary
  = integer
  / LEFTPAR additive:additive RIGHTPAR { return additive; }

integer "integer"
  = NUMBER

_ = $[ \t\n\r]*

PLUS = _"+"_
MINUS = _"-"_
MULT = _"*"_
DIV = _"/"_
LEFTPAR = _"("_
RIGHTPAR = _")"_
NUMBER = _ digits:$[0-9]+ _ { return parseInt(digits, 10); }

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat main.js 
var PEG = require("./arithmetics.js");
var r = PEG.parse("(2+9-1)/2");
console.log(r);

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat Rakefile 
PEGJS = "../bin/pegjs"
task :default => :run

desc "Compile arithmetics.pegjs"
task :compile do
  sh "#{PEGJS} arithmetics.pegjs"
end

desc "Run and use the parser generated from arithmetics.pegjs"
task :run => :compile do
  sh "node main.js"
end

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ rake
../bin/pegjs arithmetics.pegjs
node main.js
5

Asociación Incorrecta para la Resta y la División

Una cuando existe una derivación AAαA \stackrel{*}{\Longrightarrow} A \alpha.

En particular, es recursiva por la izquierda si contiene una regla de producción de la forma AAαA \rightarrow A \alpha. En este caso se dice que la recursión por la izquierda es directa.

Cuando la gramática es , el método de análisis recursivo descendente predictivo no funciona. En ese caso, el procedimiento A asociado con AA ciclaría para siempre sin llegar a consumir ningún terminal.

Es por eso que hemos escrito las reglas de la calculadora con recursividad a derechas,

additive
  = left:multiplicative PLUS right:additive { return left + right; }
  / left:multiplicative MINUS right:additive { return left - right; }
  / multiplicative

multiplicative
  = left:primary MULT right:multiplicative { return left * right; }
  / left:primary DIV right:multiplicative { return left / right; }
  / primary

pero eso da lugar a árboles hundidos hacia la derecha y a una aplicación de las reglas semánticas errónea:

[~/pegjs/examples(master)]$ cat main.js 
var PEG = require("./arithmetics.js");
var r = PEG.parse("5-3-2");
console.log(r);

[~/pegjs/examples(master)]$ node main.js
4

Reescriba el PEG de la calculadora presentado en la sección [section:UnEjemploSencillo] para que compute las operaciones aritméticas con la asociatividad correcta.

Códigos de los que partir:

Sintáxis y Semántica de PEG.js

  • On the top level, the grammar consists of .

  • Each rule has a name (e.g. primary) that identifies the rule, and a

  • e.g.

    integer / LEFTPAR additive:additive RIGHTPAR { return additive; }
    

    that defines a pattern to match against the input text and possibly contains some JavaScript code that determines what happens when the pattern matches successfully.

  • A rule can also contain name that is used in error messages (in our example, only the integer rule has a human-readable name).

    integer "integer"
      = NUMBER
    
  • The parsing starts at the first rule, which is also called the .

  • A rule name must be a JavaScript identifier.

  • It is followed by an equality sign (=) and a parsing expression.

  • If the rule has a human-readable name, it is written as a JavaScript string between the name and separating equality sign.

    integer "integer" = NUMBER
    
  • Rules need to be separated only by whitespace (their beginning is easily recognizable), but a semicolon (;) after the parsing expression is allowed.

  • Rules can be preceded by an — a piece of JavaScript code in curly braces ({ and }).

    • All variables and functions defined in the initializer are accessible in rule actions and semantic predicates (the & { predicate } and ! { predicate } are called )
  • The code inside the initializer can access options passed to the parser using the options variable.

  • .

  • This example illustrates what we said about initializers:

    [~/srcPLgrado/pegjs_examples(master)]$ cat initializer.js 
    var PEG = require("pegjs");
    var grammar = [
    ' {                             ',
    '   util = require("util");     ',
    '                               ',
    '   var g = "visible variable"; ',
    '   console.log("Inside Initializer! options = "+util.inspect(options)); ',
    ' }                             ',
    " start = 'a' { console.log(g); return 1; } ",
    "       / &   { console.log('inside predicate: '+g); return true; } 'b' { return 2; }"
    ];
    
    grammar = grammar.join('\n');
    console.log("GRAMMAR:\n"+grammar);
    
    var parser = PEG.buildParser(grammar);
    var r = parser.parse("a", { x: 'hello' });
    console.log(r); 
    r = parser.parse("b");
    console.log(r); 
    

    Produces the following output:

    [~/srcPLgrado/pegjs_examples(master)]$ node initializer.js 
    GRAMMAR:
     {                             
       util = require("util");     
    
       var g = "visible variable"; 
       console.log("Inside Initializer! options = "+util.inspect(options)); 
     }                             
     start = 'a' { console.log(g); return 1; } 
           / &   { console.log('inside predicate: '+g); return true; } 'b' { return 2; }
    Inside Initializer! options = { x: 'hello' }
    visible variable
    1
    Inside Initializer! options = {}
    inside predicate: visible variable
    2
    
    • To begin it is empty, then all declarations from the initializer are added.

    • Afterwards you can add and remove stuff (Using for instance delete myObject.property) as much as you like.

    • This scope is there even if you don’t use the initializer.

    • So you can do something like the following:

      start = a { @result }
      a = "a" { @result = "awesome" }
      

      And this will correctly return awesome if you call parse("a").

    • Also all variable assignments in an action are safely scoped to the action.

      { result = "awesome" } becomes { var result; result = "awesome" }

    • This gives you the ability to explicitly share variables with other actions via this and the security to just assign variables for local use like you are used to when writing CoffeeScript.

    • This is the Coffee version of the former JavaScript example:

      [~/srcPLgrado/pegjs_examples(master)]$ cat initializer.coffee
      PEG = require('pegjs')
      coffee = require 'pegjs-coffee-plugin'
      grammar = '''
         {                             
           util = require("util")     
           @g = "visible variable" 
           console.log("Inside Initializer! options = "+util.inspect(options))
         }                             
         start = 'a' { console.log(@g); 1 } 
               / &   { 
                       console.log("inside predicate: '#{@g}''")
                       true 
                     } 'b' { 2 }
      '''
      parser = PEG.buildParser(grammar, plugins: [coffee])
      r = parser.parse('a', x: 'hello')
      console.log r
      r = parser.parse('b')
      console.log r
      
    • When executed produces:

      [~/srcPLgrado/pegjs_examples(master)]$ coffee initializer.coffee
      Inside Initializer! options = { x: 'hello' }
      visible variable
      1
      Inside Initializer! options = {}
      inside predicate: 'visible variable''
      2
      

The parsing expressions of the rules are used to match the input text to the grammar.

There are various types of expressions — matching characters or character classes, indicating optional parts and repetition, etc.

Expressions can also contain references to other rules.

If an expression successfully matches a part of the text when running the generated parser, it produces a , which is a JavaScript value.

  • .

  • .

  • The match results propagate through the rules when the rule names are used in expressions, up to the start rule.

  • The generated parser returns start rule’s match result when parsing is successful.

One special case of parser expression is a — a piece of JavaScript code inside curly braces ({ and }) that .

This value is considered match result of the preceding expression (in other words, the parser action is a match result transformer).

In our arithmetics example, there are many parser actions.

Consider this action:

digits:[0-9]+ { return parseInt(digits.join(""), 10); }
  • It takes the match result of the expression [0-9]+, , as its parameter.

  • It joins the digits together to form a number and converts it to a JavaScript number object.

There are several types of parsing expressions, some of them containing subexpressions and thus forming a recursive structure:

  • "literal"

    'literal'
    

    Match exact literal string and return it. The string syntax is the same as in JavaScript.

    Appending i right after the literal makes the match case-insensitive:

    [~/srcPLgrado/pegjs_examples(master)]$ cat ignorecase.coffee 
    PEG = require('pegjs')
    coffee = require 'pegjs-coffee-plugin'
    grammar = '''
    start = a:'a'i 
    '''
    parser = PEG.buildParser(grammar, plugins: [coffee])
    r = parser.parse('A')
    console.log r
    parser = PEG.buildParser(grammar, plugins: [coffee])
    r = parser.parse('a')
    console.log r
    

    when executed produces:

    [~/srcPLgrado/pegjs_examples(master)]$ coffee ignorecase.coffee 
    A
    a
    
  • .

    Match exactly one character and return it as a string:

    ~/srcPLgrado/pegjs_examples(master)]$ cat dot.coffee 
    PEG = require('pegjs')
    coffee = require 'pegjs-coffee-plugin'
    grammar = '''
    start = a: ..
    '''
    parser = PEG.buildParser(grammar, plugins: [coffee])
    r = parser.parse('Ab')
    console.log r
    parser = PEG.buildParser(grammar, plugins: [coffee])
    r = parser.parse("\n\t")
    console.log r
    

    When executed produces:

    [~/srcPLgrado/pegjs_examples(master)]$ coffee dot.coffee 
    [ 'A', 'b' ]
    [ '\n', '\t' ]
    
  • [characters]

    • Match one character from a set and return it as a string.

    • The characters in the list can be escaped in exactly the same way as in JavaScript string.

    • The list of characters can also contain ranges (e.g. [a-z] means all lowercase letters).

    • Preceding the characters with ^ inverts the matched set (e.g. [^a-z] means "all character but lowercase letters).

    • Appending i right after the literal makes the match case-insensitive.

    • Example:

      \ [ /srcPLgrado/pegjs~e~xamples(master)]$ cat regexp.coffee PEG = require('pegjs') coffee = require 'pegjs-coffee-plugin' grammar = ''' start = a: [aeiou\u2661]i . x-z ''' parser = PEG.buildParser(grammar, plugins: [coffee]) r = parser.parse('Abr') console.log r r = parser.parse('♡br') console.log r [~/srcPLgrado/pegjs_examples(master)]$ coffee regexp.coffee [ ’A’, ’b’, ’r’ ] [ ’♡’, ’b’, ’r’ ] \</pre>

  • rule

    Match a parsing expression of a rule recursively and return its match result.

  • ( expression )

    Match a subexpression and return its match result.

  • expression *

    Match zero or more repetitions of the expression and . .

  • expression +

    Match one or more repetitions of the expression and . The matching is greedy, i.e. the parser tries to match the expression as many times as possible.

  • expression ?

    Try to match the expression. If the match succeeds, return its match result, otherwise return null.

  • & expression

    Try to match the expression. If the match succeeds, just return undefined and do not advance the parser position, otherwise consider the match failed.

  • ! expression

    Try to match the expression. If the match does not succeed, just return undefined and do not advance the parser position, otherwise consider the match failed.

    • Here is an example recognizing JavaScript whitespaces and comments:

      [~/srcPLgrado/pegjs/examples(master)]$ cat notpredicate.pegjs 
      __ = (whitespace / eol / comment)*
      
      /* Modeled after ECMA-262, 5th ed., 7.4. */
      comment "comment"
        = singleLineComment
        / multiLineComment
      
      singleLineComment
        = "//" (!eolChar .)*   { return text(); }
      
      multiLineComment
        = "/*" (!"*/" .)* "*/" { return text(); }
      
        /* Modeled after ECMA-262, 5th ed., 7.3. */
        eol "end of line"
          = "\n"
          / "\r\n"
          / "\r"
          / "\u2028"
          / "\u2029"

        eolChar
          = [\n\r\u2028\u2029]

        whitespace "whitespace"
          = [ \t\v\f\u00A0\uFEFF\u1680\u180E\u2000-\u200A\u202F\u205F\u3000]

-   Once it is compiled we can call it from our main program:

        [~/srcPLgrado/pegjs/examples(master)]$  cat mainnotpredicate.js 
        var PEG = require("./notpredicate.js");
        var input = process.argv[2] || "// one comment\n"+
                                       "// another comment \t/\n"+
                                       "/* a\n"+
                                       "   third comment */";
        console.log("\n*****\n"+input+"\n*****\n");
        var r = PEG.parse(input);
        console.log(r);

-   This is the output:

        [~/srcPLgrado/pegjs/examples(master)]$ pegjs notpredicate.pegjs 
        [~/srcPLgrado/pegjs/examples(master)]$ node mainnotpredicate.js 

        *****
        // one comment
        // another comment      /
        /* a
           third comment */
        *****

        [ '// one comment',
          '\n',
          '// another comment \t/',
          '\n',
          '/* a\n   third comment */' ]
  • & { predicate }

    • .

    • It gets the match results of labeled expressions in preceding expression as its arguments.

    • It should return some JavaScript value using the return statement.

    • If the returned value evaluates to true in boolean context, just return undefined and do not advance the parser position; otherwise consider the match failed.

    • The code inside the predicate can access all variables and functions defined in the initializer at the beginning of the grammar.

    • The code inside the predicate can also access the current parse position using the offset function. The offset function returns a zero-based character index into the input string.

    • The code can also access the current line and column using the line and column functions. Both return one-based indexes.

    • The code inside the predicate can also access options passed to the parser using the options variable.

    • Note that curly braces in the predicate code must be balanced.

    • The following CoffeeScript example illustrates all these points:

      [~/srcPLgrado/pegjs_examples(master)]$ cat semantic_predicate.coffee 
      PEG = require('pegjs')
      coffee = require 'pegjs-coffee-plugin'
      grammar = '''
         {                             
           @util = require("util")     
           @g = "visible variable" 
           console.log("Inside Initializer! options = "+@util.inspect(options))
         }                             
         start = 'a' { console.log(@g); 1 } 
               / c:'c' '\\n' &   { 
                             console.log("inside predicate: @g = '#{@g}' c = '#{c}'")
                             console.log("options = #{@util.inspect(options)}")
                             console.log("offset = #{offset()}")
                             console.log("line = #{line()}")
                             console.log("column = #{column()}")
                             true 
                           } 'b' { 2 }
      '''
      parser = PEG.buildParser(grammar, plugins: [coffee])
      r = parser.parse('a', x: 'hello')
      console.log r
      r = parser.parse("c\nb", y : 'world')
      console.log r
      

      When executed produces the following output:

      [~/srcPLgrado/pegjs_examples(master)]$ coffee semantic_predicate.coffee 
      Inside Initializer! options = { x: 'hello' }
      visible variable
      1
      Inside Initializer! options = { y: 'world' }
      inside predicate: @g = 'visible variable' c = 'c'
      options = { y: 'world' }
      offset = 2
      line = 2
      column = 1
      2
      
  • ! { predicate }

    • The predicate is a piece of JavaScript code that is executed as if it was inside a function.

    • It gets the match results of labeled expressions in preceding expression as its arguments.

    • It should return some JavaScript value using the return statement.

    • If the returned value evaluates to false in boolean context, just return undefined and do not advance the parser position; otherwise consider the match failed.

    • The code inside the predicate can access all variables and functions defined in the initializer at the beginning of the grammar.

    • The code inside the predicate can also access the current parse position using the offset function. The offset function returns a zero-based character index into the input string.

    • The code can also access the current line and column using the line and column functions. Both return one-based indexes.

    • The code inside the predicate can also access options passed to the parser using the options variable.

    • Note that curly braces in the predicate code must be balanced.

  • $ expression

    Try to match the expression. If the match succeeds, .

  • label : expression

    • Match the expression and remember its match result under given label.

    • The label must be a JavaScript identifier.

    • Labeled expressions are useful together with actions, where saved match results can be accessed by action’s JavaScript code.

  • expression1 expression2 ... expressionn

    Match a sequence of expressions and return their match results in an array.

  • expression { action }

    • Match the expression. If the match is successful, run the action, otherwise consider the match failed.

    • The action is a piece of JavaScript code that is executed as if it was inside a function.

    • It gets the match results of labeled expressions in preceding expression as its arguments.

    • The action should return some JavaScript value using the return statement.

    • This value is considered match result of the preceding expression.

    • To indicate an error, the code inside the action can invoke the expected function, which makes the parser throw an exception.

      The function takes one parameter — a description of what was expected at the current position. Thisdescription will be used as part of a message of the thrown exception.

    • The code inside an action can also invoke the error function, which also makes the parser throw an exception. The function takes one parameter — an error message. This message will be used by the thrown exception.

    • The code inside the action can access all variables and functions defined in the initializer at the beginning of the grammar.

    • Curly braces in the action code must be balanced.

    • The code inside the action can also access the string matched by the expression using the text function.

    • The code inside the action can also access the parse position at the beginning of the action’s expression using the offset function. It returns a zero-based character index into the input string.

    • The code can also access the line and column at the beginning of the action’s expression using the line and column functions. Both return one-based indexes.

    • The code inside the action can also access options passed to the parser using the options variable.

    • Note that curly braces in the action code must be balanced.

  • expression1 / expression2 / ... / expressionn

    Try to match the first expression, if it does not succeed, try the second one, etc. Return the match result of the first successfully matched expression. If no expression matches, consider the match failed.

La Gramática de PEG.js

[~/srcPLgrado/pegjs(master)]$ cat src/parser.pegjs 
grammar
  = __ initializer? rule+ 

initializer
  = action semicolon? 

rule
  = identifier string? equals expression semicolon? 

expression
  = choice

choice
  = sequence (slash sequence)* 

sequence
  = labeled* action 
  / labeled* 

labeled
  = identifier colon prefixed 
  / prefixed

prefixed
  = dollar suffixed 
  / and action 
  / and suffixed 
  / not action 
  / not suffixed 
  / suffixed

suffixed
  = primary question 
  / primary star 
  / primary plus 
  / primary

primary
  = identifier !(string? equals) 
  / literal
  / class
  / dot 
  / lparen expression rparen 

/* "Lexical" elements */

action "action"
  = braced __ 

braced
  = "{" (braced / nonBraceCharacters)* "}"

nonBraceCharacters
  = nonBraceCharacter+

nonBraceCharacter
  = [^{}]

equals    = "=" __ 
colon     = ":" __ 
semicolon = ";" __ 
slash     = "/" __ 
and       = "&" __ 
not       = "!" __ 
dollar    = "$" __ 
question  = "?" __ 
star      = "*" __ 
plus      = "+" __ 
lparen    = "(" __ 
rparen    = ")" __ 
dot       = "." __ 

/*
 * Modeled after ECMA-262, 5th ed., 7.6, but much simplified:
 *
 * * no Unicode escape sequences
 *
 * * "Unicode combining marks" and "Unicode connection punctuation" can't be
 *   part of the identifier
 *
 * * only [a-zA-Z] is considered a "Unicode letter"
 *
 * * only [0-9] is considered a "Unicode digit"
 *
 * The simplifications were made just to make the implementation little bit
 * easier, there is no "philosophical" reason behind them.
 *
 * Contrary to ECMA 262, the "$" character is not valid because it serves other
 * purpose in the grammar.
 */
identifier "identifier"
  = (letter / "_") (letter / digit / "_")* __ 

/*
 * Modeled after ECMA-262, 5th ed., 7.8.4. (syntax & semantics, rules only
 * vaguely).
 */
literal "literal"
  = (doubleQuotedString / singleQuotedString) "i"? __ 

string "string"
  = (doubleQuotedString / singleQuotedString) __ 

doubleQuotedString
  = '"' doubleQuotedCharacter* '"' 

doubleQuotedCharacter
  = simpleDoubleQuotedCharacter
  / simpleEscapeSequence
  / zeroEscapeSequence
  / hexEscapeSequence
  / unicodeEscapeSequence
  / eolEscapeSequence

simpleDoubleQuotedCharacter
  = !('"' / "\\" / eolChar) . 

singleQuotedString
  = "'" singleQuotedCharacter* "'" 

singleQuotedCharacter
  = simpleSingleQuotedCharacter
  / simpleEscapeSequence
  / zeroEscapeSequence
  / hexEscapeSequence
  / unicodeEscapeSequence
  / eolEscapeSequence

simpleSingleQuotedCharacter
  = !("'" / "\\" / eolChar) . 

class "character class"
  = "[" "^"? (classCharacterRange / classCharacter)* "]" "i"? __ 

classCharacterRange
  = classCharacter "-" classCharacter 

classCharacter
  = bracketDelimitedCharacter 

bracketDelimitedCharacter
  = simpleBracketDelimitedCharacter
  / simpleEscapeSequence
  / zeroEscapeSequence
  / hexEscapeSequence
  / unicodeEscapeSequence
  / eolEscapeSequence

simpleBracketDelimitedCharacter
  = !("]" / "\\" / eolChar) . 

simpleEscapeSequence
  = "\\" !(digit / "x" / "u" / eolChar) . 

zeroEscapeSequence
  = "\\0" !digit 

hexEscapeSequence
  = "\\x" hexDigit hexDigit)

unicodeEscapeSequence
  = "\\u" hexDigit hexDigit hexDigit hexDigit)

eolEscapeSequence
  = "\\" eol 

digit
  = [0-9]

hexDigit
  = [0-9a-fA-F]

letter
  = lowerCaseLetter
  / upperCaseLetter

lowerCaseLetter
  = [a-z]

upperCaseLetter
  = [A-Z]

__ = (whitespace / eol / comment)*

/* Modeled after ECMA-262, 5th ed., 7.4. */
comment "comment"
  = singleLineComment
  / multiLineComment

singleLineComment
  = "//" (!eolChar .)*

multiLineComment
  = "/*" (!"*/" .)* "*/"

/* Modeled after ECMA-262, 5th ed., 7.3. */
eol "end of line"
  = "\n"
  / "\r\n"
  / "\r"
  / "\u2028"
  / "\u2029"

eolChar
  = [\n\r\u2028\u2029]

/* Modeled after ECMA-262, 5th ed., 7.2. */
whitespace "whitespace"
  = [ \t\v\f\u00A0\uFEFF\u1680\u180E\u2000-\u200A\u202F\u205F\u3000]

Acciones Intermedias

Supongamos que queremos poner una acción semántica intermedia en un programa :

[~/srcPLgrado/pegjs/examples(master)]$ cat direct_intermedia.pegjs 
a = 'a'+ { console.log("acción intermedia"); } 'b'+ { 
                     console.log("acción final"); 
                     return "hello world!";
                   }

Al compilar nos da un mensaje de error:

[~/srcPLgrado/pegjs/examples(master)]$ pegjs direct_intermedia.pegjs 
1:48: Expected "/", ";", end of input or identifier but "'" found.

Usando Predicados Semánticos

La solución es sencilla: añadimos la acción como un predicado semántico. Véase este ejemplo:

[~/srcPLgrado/pegjs/examples(master)]$ coffee semantic_intermedia.coffee 
acción intermedia. a = aa
acción final. b = bb
r = aabb
[~/srcPLgrado/pegjs/examples(master)]$ cat semantic_intermedia.coffee 
PEG = require 'pegjs'

grammar = """
a = a:$'a'+ 
    & { console.log("acción intermedia. a = "+a); return true; } 
    b:$'b'+ { 
             console.log("acción final. b = "+b); 
             return text();
          }
"""
parser = PEG.buildParser grammar
r = parser.parse "aabb"
console.log("r = #{r}")

Cuando se ejecuta produce esta salida:

[~/srcPLgrado/pegjs/examples(master)]$ coffee semantic_intermedia.coffee 
acción intermedia. a = aa
acción final. b = bb
r = aabb

Usando Variable Sintáctica Intermedia

Otra posible solución consiste en introducir una variable sintáctica en medio que derive a la palabra vacía y que tenga asociada la correspondiente acción semántica:

[~/srcPLgrado/pegjs/examples(master)]$ cat intermedia.pegjs 
a = 'a'+ temp 'b'+ { 
                     console.log("acción final"); 
                     return "hello world!";
                   }
temp = { console.log("acción intermedia"); }

Este es el programa que usa el parser generado:

[~/srcPLgrado/pegjs/examples(master)]$ cat main_intermedia.js 
var parser = require("intermedia");
var input = process.argv[2] || 'aabb';
var result = parser.parse(input);
console.log(result);

al ejecutar tenemos:

[~/srcPLgrado/pegjs/examples(master)]$ pegjs intermedia.pegjs 
[~/srcPLgrado/pegjs/examples(master)]$ node main_intermedia.js 
acción intermedia
acción final
hello world!

PegJS en los Browser

  • ~/srcPLgrado/pegjs/examples(master)]$ pwd -P

    /Users/casiano/local/src/javascript/PLgrado/pegjs/examples
    
  • [~/srcPLgrado/pegjs/examples(master)]$ git remote -v

    dmajda  https://github.com/dmajda/pegjs.git (fetch)
    dmajda  https://github.com/dmajda/pegjs.git (push)
    origin  git@github.com:crguezl/pegjs.git (fetch)
    origin  git@github.com:crguezl/pegjs.git (push)
    

Podemos usar directamente las versiones para los browser:

[~/Dropbox/src/javascript/PLgrado/jison]$ pegjs --help
Usage: pegjs [options] [--] [<input_file>] [<output_file>]

Generates a parser from the PEG grammar specified in the <input_file> and
writes it to the <output_file>.

If the <output_file> is omitted, its name is generated by changing the
<input_file> extension to ".js". If both <input_file> and <output_file> are
omitted, standard input and output are used.

Options:
  -e, --export-var <variable>  name of the variable where the parser object
                               will be stored (default: "module.exports")
      --cache                  make generated parser cache results
      --track-line-and-column  make generated parser track line and column
  -v, --version                print version information and exit
  -h, --help                   print help and exit

Le indicamos que el parser se guarde en calculator:

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ rake web
../bin/pegjs -e calculator arithmetics.pegjs

[~/srcPLgrado/pegjs/examples(master)]$ head -5 arithmetics.js 
calculator = (function() {
  /*
   * Generated by PEG.js 0.7.0.
   *
   * http://pegjs.majda.cz/

Ahora, desde el JavaScript que llama al parser accedemos al objeto mediante la variable calculator:

[~/srcPLgrado/pegjs/examples(master)]$ cat calc.js 
$(document).ready(function() {
  $('#eval').click(function() {
    try {
      var result = calculator.parse($('#input').val());
      $('#output').html(result);
    } catch (e) {
      $('#output').html('<div class="error"><pre>\n' + String(e) + '\n</pre></div>');
    }
  });

  $("#examples").change(function(ev) {
    var f = ev.target.files[0]; 
    var r = new FileReader();
    r.onload = function(e) { 
      var contents = e.target.result;

      input.innerHTML = contents;
    }
    r.readAsText(f);
  });

});

El PEG describe una calculadora:

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat arithmetics.pegjs 
/*
 * Classic example grammar, which recognizes simple arithmetic expressions like
 * "2*(3+4)". The parser generated from this grammar then computes their value.
 */

start
  = additive

additive
  = left:multiplicative PLUS right:additive { return left + right; }
  / left:multiplicative MINUS right:additive { return left - right; }
  / multiplicative

multiplicative
  = left:primary MULT right:multiplicative { return left * right; }
  / left:primary DIV right:multiplicative { return left / right; }
  / primary

primary
  = integer
  / LEFTPAR additive:additive RIGHTPAR { return additive; }

integer "integer"
  = NUMBER

_ = $[ \t\n\r]*

PLUS = _"+"_
MINUS = _"-"_
MULT = _"*"_
DIV = _"/"_
LEFTPAR = _"("_
RIGHTPAR = _")"_
NUMBER = _ digits:$[0-9]+ _ { return parseInt(digits, 10); }

[~/srcPLgrado/pegjs/examples(master)]$ cat calculator.html 
<!DOCTYPE HTML>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>pegjs</title>
    <link rel="stylesheet" href="global.css" type="text/css" media="screen" charset="utf-8" />
  </head>
  <body>
    <h1>pegjs</h1>
    <div id="content">
      <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
      <script src="arithmetics.js"></script>
      <script src="calc.js"></script>

      <p>
      Load an example:
      <input type="file" id="examples" />
      </p>

      <p>
      <table>
        <tr>
          <td>
            <textarea id="input" autofocus cols = "40" rows = "4">2+3*4</textarea> 
          </td>
          <td class="output">
            <pre>
              <span id="output"></span> <!-- Output goes here! --> 
            </pre>
          </td>
          <td><button id="eval" type="button">eval</button></td>
        </tr>
      </table>
      </p>
    </div>
  </body>
</html>

\

[fig:pegjs]

Eliminación de la Recursividad por la Izquierda en PEGs

Eliminación Usando Operadores de Repetición

  • [~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ pwd -P

    /Users/casiano/local/src/javascript/PLgrado/pegjs-coffee-plugin/examples
    
  • [~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ git remote -v

    dignifiedquire  git@github.com:Dignifiedquire/pegjs-coffee-plugin.git (fetch)
    dignifiedquire  git@github.com:Dignifiedquire/pegjs-coffee-plugin.git (push)
    origin  git@github.com:crguezl/pegjs-coffee-plugin.git (fetch)
    origin  git@github.com:crguezl/pegjs-coffee-plugin.git (push)
    

Consideremos el siguiente esquema de traducción implementado en :

[~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ cat leftrec.jison 
/*
Exercise: Find a PEG equivalent to the following left-recursive
grammar:
*/
%lex
%%

\s+               { /* skip whitespace */ }
y                 { return 'y';}
.                 { return 'x';}

/lex

%{
  do_y = function(y)   { console.log("A -> 'y'   do_y("+y+")"); return y; }
  do_x = function(a, x){ console.log("A -> A 'x' do_x("+a+", "+x+")"); return a+x; }
%}

%%
A : A 'x' { {% math %} = do_x($1, $2); } 
  | 'y'   { {% endmath %} = do_y($1); }
;

[~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ jison leftrec.jison 
[~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ ls -ltr leftrec.j*
-rw-r--r--  1 casiano  staff    441 18 mar 20:22 leftrec.jison
-rw-r--r--  1 casiano  staff  20464 18 mar 20:34 leftrec.js

[~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ cat main_leftrec.js 
var parser = require('./leftrec');
input = "y x x x";
var r = parser.parse(input);

[~/srcPLgrado/pegjs-coffee-plugin/examples(master)]$ node main_leftrec.js 
A -> 'y'   do_y(y)
A -> A 'x' do_x(y, x)
A -> A 'x' do_x(yx, x)
A -> A 'x' do_x(yxx, x)

Es posible modificar la gramática para eliminar la recursión por la izquierda. En este apartado nos limitaremos al caso de recursión por la izquierda directa. La generalización al caso de recursión por la izquierda no-directa se reduce a la iteración de la solución propuesta para el caso directo.

Consideremos una variable $A$ con dos producciones:

AAα βA \rightarrow A \alpha |\ \beta

donde α,β(VΣ)\alpha, \beta \in (V \cup \Sigma)^* no comienzan por AA. Estas dos producciones pueden ser sustituidas por:

AβαA \rightarrow \beta \alpha *

eliminando así la recursión por la izquierda.

[~/pegjs-coffee-remove-left(master)]$ cat -n remove_left_recursive.pegjs 
     1  /*
     2  
     3  Exercise: Find a PEG equivalent to the following left-recursive
     4  grammar:
     5  
     6  A : A 'x' { {% math %} = do_x($1, $2); } | 'y' { {% endmath %} = do_y($1); }
     7  
     8  */
     9  
    10  {
    11    @do_y = (y)   -> console.log("do_y(#{y})"); y
    12    @do_x = (a, x)-> console.log("do_x(#{a}, #{x})"); a+x
    13  }
    14  
    15  A = y:'y' xs:('x'*) 
    16       {
    17          a = @do_y(y)
    18          for x in xs
    19            a = @do_x(a, x)
    20          a
    21       }

[~/pegjs-coffee-remove-left(master)]$ pegjs --plugin pegjs-coffee-plugin remove_left_recursive.pegjs 
[~/pegjs-coffee-remove-left(master)]$ ls -ltr | tail -1
-rw-rw-r--  1 casiano  staff   8919  3 jun 10:42 remove_left_recursive.js

[~/pegjs-coffee-remove-left(master)]$ cat use_remove_left.coffee 
PEG = require("./remove_left_recursive.js")
inputs = [
           "yxx"
           "y"
           "yxxx"
         ]

for input in inputs 
  console.log("input = #{input}")
  r = PEG.parse input
  console.log("result = #{r}\n")

[~/pegjs-coffee-remove-left(master)]$ coffee use_remove_left.coffee 
input = yxx
do_y(y)
do_x(y, x)
do_x(yx, x)
result = yxx

input = y
do_y(y)
result = y

input = yxxx
do_y(y)
do_x(y, x)
do_x(yx, x)
do_x(yxx, x)
result = yxxx

Eliminado la Recursividad por la Izquierda en la Calculadora Usando Operadores de Repetición

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat simple.pegjs 
/* From the Wikipedia
Value   ← [0-9]+ / '(' Expr ')'
Product ← Value (('*' / '/') Value)*
Sum     ← Product (('+' / '-') Product)*
Expr    ← Sum
*/
{ 
  function reduce(left, right) {
    var sum = left;
    // console.log("sum = "+sum);
    for(var i = 0; i < right.length;i++) {
      var t = right[i];
      var op = t[0];
      var num = t[1];
      switch(op) {
        case '+' : sum += num; break;
        case '-' : sum -= num; break;
        case '*' : sum *= num; break;
        case '/' : sum /= num; break;
        default : console.log("Error! "+op);
      }
      // console.log("sum = "+sum);
    }
    return sum;
  }
}

sum   = left:product right:($[+-] product)* { return reduce(left, right); }
product = left:value right:($[*/] value)*   { return reduce(left, right); }
value   = number:$[0-9]+                    { return parseInt(number,10); }
        / '(' sum:sum ')'                   { return sum; }

Es posible especificar mediante llaves un código que este disponible dentro de las acciones semánticas.

Ejecución:

[~/pegjs/examples(master)]$ cat use_simple.js 
var PEG = require("./simple.js");
var r = PEG.parse("2-3-4");
console.log(r);

[~/pegjs/examples(master)]$ node use_simple.js 
-5

Veamos otra ejecución:

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ cat use_simple.js 
var PEG = require("./simple.js");
var r = PEG.parse("2+3*(2+1)-10/2");
console.log(r);

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ ../bin/pegjs simple.pegjs 
[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ node use_simple.js 
6

Eliminación Usando Predicados Semánticos: Sólo Sintáxis

La sección anterior da una forma sencilla de resolver el problema respetando la semántica. Si no se dispone de operadores de repetición la cosa se vuelve mas complicada. Las siguientes secciones muestran una solución para transformar un esquema de traducción recursivo por la izquierda en otro no recursivo por la izquierda respetando el orden en el que se ejecutan las acciones semánticas. Por último se ilustra como se puede aplicar esta técnica en pegjs (aunque obviamente es mucho mejor usar la ilustrada anteriormente).

Es posible modificar la gramática para eliminar la recursión por la izquierda. En este apartado nos limitaremos al caso de recursión por la izquierda directa. La generalización al caso de recursión por la izquierda no-directa se reduce a la iteración de la solución propuesta para el caso directo.

Consideremos una variable AA con dos producciones:

AAα βA \rightarrow A \alpha |\ \beta

donde α,β(VΣ)\alpha, \beta \in (V \cup \Sigma)^* no comienzan por AA. Estas dos producciones pueden ser sustituidas por:


AβRA \rightarrow \beta R

RαR  ϵR \rightarrow \alpha R\ |\ \epsilon

eliminando así la recursión por la izquierda.

La producción RαRR \rightarrow \alpha R se dice .

Las producciones recursivas por la derecha dan lugar a árboles que se hunden hacia la derecha. Es mas difícil traducir desde esta clase de árboles operadores como el menos, que son asociativos a izquierdas.

Elimine la recursión por la izquierda de la gramática


exprexprNUMexpr \rightarrow expr - NUM

exprNUMexpr \rightarrow NUM

Eliminación de la Recursión por la Izquierda Incluyendo la Semántica

La eliminación de la recursión por la izquierda es sólo un paso: debe ser extendida a esquemas de traducción, de manera que no sólo se preserve el lenguaje sino la secuencia de acciones. Supongamos que tenemos un esquema de traducción de la forma:


AAαA \rightarrow A \alpha { alpha_action } AAβA \rightarrow A \beta { beta_action } AγA \rightarrow \gamma { gamma_action }


para una sentencia como γβα\gamma \beta \alpha la secuencia de acciones será:

gamma_action beta_action alpha_action

¿Cómo construir un esquema de traducción para la gramática resultante de eliminar la recursión por la izquierda que ejecute las acciones asociadas en el mismo orden?. Supongamos para simplificar, que las acciones no dependen de atributos ni computan atributos, sino que actúan sobre variables globales. En tal caso, la siguiente ubicación de las acciones da lugar a que se ejecuten en el mismo orden:


AγA \rightarrow \gamma { gamma_action } RR RβR \rightarrow \beta { beta_action } RR RαR \rightarrow \alpha { alpha_action } RR

RϵR \rightarrow \epsilon

Si hay atributos en juego, la estrategia para construir un esquema de traducción equivalente para la gramática resultante de eliminar la recursividad por la izquierda se complica. Consideremos de nuevo el esquema de traducción de infijo a postfijo de expresiones aritméticas de restas:


exprexpr1NUMexpr \rightarrow expr_1 - NUM { $expr{T} = $expr[1]{T}+" "+$NUM{VAL}+" - "} exprNUMexpr \rightarrow NUM { $expr{T} = $NUM{VAL} }


En este caso introducimos un atributo H para los nodos de la clase rr el cuál acumula la traducción a postfijo hasta el momento. Observe como este atributo se computa en un nodo rr a partir del correspondiente atributo del el padre y/o de los hermanos del nodo:

exprNUMexpr \rightarrow NUM { $r{H} = $NUM{VAL} } $r$ { $expr{T} = $r{T} }\ $r \rightarrow - NUM$ { $r_1{H} = $r{H}+" "+$NUM{VAL}." - " } $r_1$ { $r{T} = $r_1{T} }\ $r \rightarrow \epsilon$ { $r{T} = $r{H} }

El atributo H es un ejemplo de atributo heredado.

Atributos Heredados y PEGJS

PegJS no permite acciones intermedias aunque si predicados semánticos. Tampoco se puede acceder al atributo de la parte izquierda. Por eso, a la hora de implantar la solución anterior debemos introducir predicados semánticos.

Además nos obliga a usar variables visibles por todas las reglas semánticas para emular el acceso a los atributos de la parte izquierda de una regla de producción.

El siguiente ejemplo ilustra como eliminar la recursión por la izquierda respetando la asociatividad de la operación de diferencia:

[~/srcPLgrado/pegjs/examples(master)]$ cat inherited2.pegjs 
{
  var h = 0, number = 0;
}

e = NUMBER &{ h = number; return true; } r { return h; }

r = '-' NUMBER &{ h -= number; return true; } r  { return h; } / /* empty */

NUMBER = _ digits:$[0-9]+ _  { number = parseInt(digits, 10); return number; }

_ = $[ \t\n\r]*

Aquí h - aún cuando se trata de una variable compartida - es usado como si fuera un atributo de los símbolos del PEG. Un tal atributo se denomina .

Este es el código para usar el PEG anterior:

[~/srcPLgrado/pegjs/examples(master)]$ cat use_inherited2.js 
var PEG = require("./inherited2.js");
var input = process.argv[2] || "5-1-2";
var r = PEG.parse(input);
console.log(r);

Al ejecutarlo obtenemos:

[~/srcPLgrado/pegjs/examples(master)]$ pegjs inherited2.pegjs 
[~/srcPLgrado/pegjs/examples(master)]$ node use_inherited2.js 4-3-1
0
[~/srcPLgrado/pegjs/examples(master)]$ node use_inherited2.js 7-1-2
4

Eliminado la Recursividad por la Izquierda en la Calculadora Usando Predicados Semánticos

En este ejemplo ilustramos como podemos insertar predicados semánticos entre los operadores de repetición para obtener la semántica deseada:

[~/srcPLgrado/pegjs/examples(master)]$ cat simple2.pegjs 
{
  var sum = 0;
  var initsum = function(first) { 
    sum = first; 
    return true; 
  };
  var add = function(op, p) {
    switch(op) {
        case '+':
            sum += p; 
            break;
        case '-':
            sum -= p; 
            break;
        default:
            error('"+" or "-" expected');
    }
    return true;
  };
}

sum     = first:value &{ return initsum(first); } (op:[+-] product:value & { return add(op, product); })* { return sum; } 
value   = number:$[0-9]+                     { return parseInt(number,10); }
        / '(' sum:sum ')'                    { return sum; }

El primer predicado first:value &{ return initsum(first); } inicializa la suma. A continuación y aprovechando el cierre * se ejecuta en bucle el segundo predicado (op:[+-] product:value & { return add(op, product); }) que va acumulando el resultado. La acción semántica final se limita a retornar el resultado acumulado.

[~/srcPLgrado/pegjs/examples(master)]$ cat use_simple2.js
var PEG = require("./simple2.js");
var input = process.argv[2] || "5-1-2";
var r = PEG.parse(input);
console.log(r);

[~/srcPLgrado/pegjs/examples(master)]$ pegjs simple2.pegjs 
[~/srcPLgrado/pegjs/examples(master)]$ node use_simple2.js 3-1-5
-3

La variable sum es excesivamente visible. Podemos encapsularla un poco mas:

[~/srcPLgrado/pegjs/examples(master)]$ cat simple3.pegjs 
{
  var sum = (function() {
    var sum = 0;
    var get = function() { return sum; };
    var set = function(first) { 
      sum = first; 
      return true; 
    };
    var add = function(op, p) {
      switch(op) {
          case '+':
              sum += p; 
              break;
          case '-':
              sum -= p; 
              break;
          default:
              error('"+" or "-" expected');
      }
      return true;
    };
    return {s: set, a: add, g: get };
  })();
}

sum     = first:value &{ return sum.s(first); } (op:[+-] product:value & { return sum.a(op, product); })* { return sum.g(); } 
value   = number:$[0-9]+                     { return parseInt(number,10); }
        / '(' sum:sum ')'                    { return sum; }

[~/srcPLgrado/pegjs/examples(master)]$ cat use_simple3.js 
var PEG = require("./simple3.js");
var input = process.argv[2] || "5-1-2";
var r = PEG.parse(input);
console.log(r);

[~/srcPLgrado/pegjs/examples(master)]$ pegjs simple3.pegjs 
[~/srcPLgrado/pegjs/examples(master)]$ node use_simple3.js 4-1-1
2
[~/srcPLgrado/pegjs/examples(master)]$ node use_simple3.js 4-1-4
-1

Reconocimiento de Lenguajes con PEGjs

PEGs versus Gramáticas

Una gramática y un PEG con las mismas reglas no definen el mismo lenguaje. Véase este ejemplo:

[~/srcPLgrado/pegjs/examples(master)]$ cat grammarvspeg.coffee 
#!/usr/bin/env coffee
PEG = require 'pegjs'
coffee = require 'pegjs-coffee-plugin'
grammar = """
a =  b 'c'           
b = 'b' / 'b' 'a'   
"""
parser = PEG.buildParser grammar, plugins: [coffee]
r = parser.parse "bc"
console.log("r = #{r}")
r = parser.parse "bac"
console.log("r = #{r}")
[~/srcPLgrado/pegjs/examples(master)]$ coffee grammarvspeg.coffee 
r = b,c
SyntaxError: Expected "c" but "a" found.

Obsérvese que la correspondiente gramática genera el lenguaje:

{ 'bc', 'bac' }

Mientras que el PEG acepta el lenguaje 'bc'.

: Asociando un else con su if mas cercano

The dangling else is a problem in computer programming in which an optional else clause in an If–then(–else) statement results in nested conditionals being ambiguous.

Formally, the reference context-free grammar of the language is ambiguous, meaning there is more than one correct parse tree.

In many programming languages one may write conditionally executed code in two forms:

the if-then form, and the if-then-else form – the else clause is optional:

              if a then s
              if a then s1 else s2

This gives rise to an ambiguity in interpretation when there are nested statements, specifically whenever an if-then form appears as s1 in an if-then-else form:

              if a then if b then s else s2

In this example, s is unambiguously executed when a is true and b is true, but one may interpret s2 as being executed when a is false

  • (thus attaching the else to the first if) or when

  • a is true and b is false (thus attaching the else to the second if).

In other words, one may see the previous statement as either of the following expressions:

if a then (if b then s) else s2

or

if a then (if b then s else s2)

This is a problem that often comes up in compiler construction, especially scannerless parsing.

The convention when dealing with the dangling else is to attach the else to the nearby if statement.

Programming languages like Pascal and C follow this convention, so there is no ambiguity in the semantics of the language, though the use of a parser generator may lead to ambiguous grammars. In these cases , such as begin...end in Pascal and {...} in C.

Here follows a solution in PEG.js:

$ cat danglingelse.pegjs 
/*
S ← 'if' C 'then' S 'else' S / 'if' C 'then' S
*/

S =   if C:C then S1:S else S2:S { return [ 'ifthenelse', C, S1, S2 ]; }
    / if C:C then S:S            { return [ 'ifthen', C, S]; }
    / O                          { return 'O'; }
_ = ' '*
C = _'c'_                        { return 'c'; }
O = _'o'_                        { return 'o'; }
else = _'else'_                 
if = _'if'_
then = _'then'_

$ cat use_danglingelse.js 
var PEG = require("./danglingelse.js");
var r = PEG.parse("if c then if c then o else o");
console.log(r);

$ ../bin/pegjs danglingelse.pegjs 
$ node use_danglingelse.js 
[ 'ifthen', 'c', [ 'ifthenelse', 'c', 'O', 'O' ] ]
  • [~/srcPLgrado/pegjs/examples(master)]$ pwd -P

    /Users/casiano/local/src/javascript/PLgrado/pegjs/examples
    
  • [~/srcPLgrado/pegjs/examples(master)]$ git remote -v

    dmajda  https://github.com/dmajda/pegjs.git (fetch)
    dmajda  https://github.com/dmajda/pegjs.git (push)
    origin  git@github.com:crguezl/pegjs.git (fetch)
    origin  git@github.com:crguezl/pegjs.git (push)
    

Si invertimos el orden de las alternativas:

[~/srcPLgrado/pegjs/examples(master)]$ cat danglingelse2.pegjs 
/*
S ← 'if' C 'then' S 'else' S / 'if' C 'then' S
*/

S =   if C:C then S:S            { return [ 'ifthen', C, S]; }
    / if C:C then S1:S else S2:S { return [ 'ifthenelse', C, S1, S2 ]; }
    / O                          { return 'O'; }
_ = ' '*
C = _'c'_                        { return 'c'; }
O = _'o'_                        { return 'o'; }
else = _'else'_                 
if = _'if'_
then = _'then'_

el lenguaje reconocido cambia (vease el ejemplo en la sección [subsection:pegvsgrammars]):

[~/srcPLgrado/pegjs/examples(master)]$ pegjs danglingelse2.pegjs 
[~/srcPLgrado/pegjs/examples(master)]$ cat use_danglingelse2.js 
var PEG = require("./danglingelse2.js");
var r = PEG.parse("if c then if c then o else o");
console.log(JSON.stringify(r));

[~/srcPLgrado/pegjs/examples(master)]$ node use_danglingelse2.js 

/Users/casiano/local/src/javascript/PLgrado/pegjs/examples/danglingelse2.js:513
      throw peg$buildException(null, peg$maxFailExpected, peg$maxFailPos);
            ^
SyntaxError: Expected " " or end of input but "e" found.

Not Predicate: Comentarios Anidados

The following recursive program matches Pascal-style nested comment syntax:

(* which can (* nest *) like this *)

[~/srcPLgrado/pegjs/examples(master)]$ cat pascal_comments.pegjs 
/* Pascal nested comments */

P     =   prog:N+                       { return prog; }
N     =   chars:$(!Begin .)+            { return chars;}
        / C
C     = Begin chars:$T* End             { return "C: "+chars; }
T     =   C 
        / (!Begin !End char:.)          { return char;}
Begin = '(*'
End   = '*)'

$ cat use_pascal_comments.js 
var PEG = require("./pascal_comments.js");
var r = PEG.parse(
  "not bla bla (* pascal (* nested *) comment *)"+
  " pum pum (* another comment *)");
console.log(r);

$ ../bin/pegjs pascal_comments.pegjs 
$ node use_pascal_comments.js 
[ 'not bla bla ',
  ' pascal  nested  comment ',
  ' pum pum ',
  ' another comment ' ]
  • [~/srcPLgrado/pegjs/examples(master)]$ pwd -P

    /Users/casiano/local/src/javascript/PLgrado/pegjs/examples
    
  • [~/srcPLgrado/pegjs/examples(master)]$ git remote -v

    dmajda  https://github.com/dmajda/pegjs.git (fetch)
    dmajda  https://github.com/dmajda/pegjs.git (push)
    origin  git@github.com:crguezl/pegjs.git (fetch)
    origin  git@github.com:crguezl/pegjs.git (push)
    

Un Lenguaje Dependiente del Contexto

El lenguaje {anbncn/nN}\{ a^n b^n c^n / n \in \mathcal{N} \} no puede ser expresado mediante una gramática independiente del contexto.

[~/srcPLgrado/pegjs/examples(master)]$ cat anbncn.pegjs 
/*
  The following parsing expression grammar describes the classic 
  non-context-free language : 
               { a^nb^nc^n / n >= 1 }
*/

S = &(A 'c') 'a'+ B:B !.  { return B; }
A = 'a' A:A? 'b' { if (A) { return A+1; } else return 1; }
B = 'b' B:B? 'c' { if (B) { return B+1; } else return 1; }

Este ejemplo puede ser obtenido desde GitHub:

[~/Dropbox/src/javascript/PLgrado/pegjs/examples(master)]$ git remote -v
dmajda  https://github.com/dmajda/pegjs.git (fetch)
dmajda  https://github.com/dmajda/pegjs.git (push)
origin  git@github.com:crguezl/pegjs.git (fetch)
origin  git@github.com:crguezl/pegjs.git (push)

Veamos un ejemplo de uso:

[~/srcPLgrado/pegjs/examples(master)]$ cat use_anbncn.js 
#!/usr/bin/env node
var PEG = require("./anbncn.js");

if (process.argv.length > 2) {
  try {
    var r = PEG.parse(process.argv[2]);
    console.log("ok "+JSON.stringify(r));
  }
  catch (e) {
    console.log("Grr...."+e);
  }
  process.exit(0);
}
var inputs = ["aabbcc", 
              "aabbc",     // error
              "aaabbbccc",
              "aaaabbbccc"  // not accepted
             ];

for(var i = 0; i < inputs.length; i++) {
  var input = inputs[i];
  try {
    var r = PEG.parse(input);
    console.log("ok "+JSON.stringify(r));
  }
  catch (e) {
    console.log("Grr...."+e);
  }
}

Ejecución:

[~/srcPLgrado/pegjs/examples(master)]$ node use_anbncn.js
ok 2
Grr....SyntaxError: Expected "c" but end of input found.
ok 3
Grr....SyntaxError: Expected undefined but "a" found.

Reescriba el analizador sintáctico del lenguaje PL0 realizado en la práctica [practica:pl0] usando .

[practica:pl0ampliado] Reescriba el analizador sintáctico del lenguaje PL0 realizado en la práctica [practica:pl0] usando .

      • [~/srcPLgrado/pegjscalc(master)]$ pwd -P /Users/casiano/local/src/javascript/PLgrado/pegjscalc
  • [~/srcPLgrado/pegjscalc(master)]$ git remote -v

    heroku  git@heroku.com:pegjspl0.git (fetch)
    heroku  git@heroku.com:pegjspl0.git (push)
    origin  git@github.com:crguezl/pegjscalc.git (fetch)
    origin  git@github.com:crguezl/pegjscalc.git (push)
    
  • Modifique block y statement para que los procedure reciban argumentos y las llamadas a procedimiento puedan pasar argumentos. Añada if ... then ... else ....

  • Actualice la documentación de la gramática para que refleje la gramática ampliada

  • Limite el número de programas que se pueden salvar a un número prefijado, por ejemplo 10. Si se intenta salvar uno se suprime uno al azar y se guarda el nuevo.

  • Las pruebas deben comprobar que la asociatividad a izquierdas funciona bien y probar todos los constructos del lenguaje así como alguna situación de error

  • Véase el capítulo Heroku [chapter:heroku]

    • Véase el capítulo DataMapper [chapter:datamapper]

This lab illustrates a problem that arises in C++. The C++ syntax does not disambiguate between expression statements (stmt) and declaration statements (decl). The ambiguity arises when an expression statement has a function-style cast as its left-most subexpression. Since C does not support function-style casts, this ambiguity does not occur in C programs. For example, the phrase

int (x) = y+z;

parses as either a decl or a stmt.

The disambiguation rule used in C++ is that if the statement can be interpreted both as a declaration and as an expression, the statement is interpreted as a declaration statement.

The following examples disambiguate into expression statements when the potential declarator is followed by an operator different from equal or semicolon (type_spec stands for a type specifier):

|p3.5cm|p4.5cm|</span> expr & dec\

type_spec(i)++;      
type_spec(i,3)<<d;  
type_spec(i)->l=24;

&

type_spec(*i)(int); 
type_spec(j)[5];   
type_spec(m) = { 1, 2 }; 
type_spec(a);              
type_spec(*b)();          
type_spec(c)=23;         
type_spec(d),e,f,g=0;   
type_spec(h)(e,3);     

\

Regarding to this problem, Bjarne Stroustrup remarks:

Consider analyzing a statement consisting of a sequence of tokens as follows:

              type_spec (dec_or_exp) tail

Here dec_or_exp must be a declarator, an expression, or both for the statement to be legal. This implies that tail must be a semicolon, something that can follow a parenthesized declarator or something that can follow a parenthesized expression, that is, an initializer, const, volatile, (, [, or a postfix or infix operator. The general cases cannot be resolved without backtracking, nested grammars or similar advanced parsing strategies. In particular, the lookahead needed to disambiguate this case is not limited.

The following grammar depicts an oversimplified version of the C++ ambiguity:

$ cat CplusplusNested.y 
%token ID INT NUM

%right '='
%left '+'

%%
prog:
    /* empty */
  | prog stmt
;

stmt: 
    expr ';' 
  | decl    
;

expr:
    ID 
  | NUM
  | INT '(' expr ')' /* typecast */ 
  | expr '+' expr
  | expr '=' expr
;

decl:
    INT declarator ';'
  | INT declarator '=' expr ';'
;

declarator:
    ID 
  | '(' declarator ')'
;

%%

Escriba un programa PegJS en CoffeeScript que distinga correctamente entre declaraciones y sentencias. Este es un ejemplo de un programa que usa una solución al problema:

[~/Dropbox/src/javascript/PLgrado/pegjs-coffee-plugin/examples(master)]$ cat use_cplusplus.coffee 
PEG = require("./cplusplus.js")
input = "int (a); int c = int (b);"

r = PEG.parse(input)
console.log("input = '#{input}'\noutput="+JSON.stringify r)

input = "int b = 4+2  ;  "
r = PEG.parse(input)
console.log("input = '#{input}'\noutput="+JSON.stringify r)

input = "bum = caf = 4-1;\n"
r = PEG.parse(input)
console.log("input = '#{input}'\noutput="+JSON.stringify r)

input = "b2 = int(4);"
r = PEG.parse(input)
console.log("input = '#{input}'\noutput="+JSON.stringify r)

input = "int(4);"
r = PEG.parse(input)
console.log("input = '#{input}'\noutput="+JSON.stringify r)

Y este un ejemplo de salida:

$ pegcoffee cplusplus.pegjs 
$ coffee use_cplusplus.coffee 
input = 'int (a); int c = int (b);'
output=["decl","decl"]
input = 'int b = 4+2  ;  '
output=["decl"]
input = 'bum = caf = 4-1;
'
output=["stmt"]
input = 'b2 = int(4);'
output=["stmt"]
input = 'int(4);'
output=["stmt"]

El objetivo de esta práctica es crear un lenguaje de programación imperativa sencillo de estilo . Para ello lea el capítulo del de . Haga todos los ejercicios e implemente el lenguaje descrito.

Puede encontrar una solución a la práctica en GitHub en el repositorio de . Usela como guía cuando se sienta desorientado.

  • por Nathan Whitehead

  • Repositorio con las soluciones a esta práctica.

    • Blog de
  • Repositorio con las soluciones a esta práctica.

  • Repositorio con contenidos del curso PL101

    • Sobre Nathan Whitehead